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TWO-DIMENSIONAL MOTION OF A GAS AT LARGE SUPERSONIC VELOCITIES*

By S. V. Falkovich

A lerge number of pepers have been devoted to the problem of
integration of equations of two-dimensional steedy nonvortical
adiasbatic motion of a gas. Most of these papers are based on the
application of the hodograph method of S. A. Chaplygin in which
the plane of the hodograph of the velocity is taken as the region
of varlstion of the independent variebles in the equations of
motion; the equations become linear in this plane. The exact
integration of these equations is, howsver, obtained in the form
of infinite series containing hypergeometric functions. The
obtaining of such solutions and thelr investigation involve exten-
slve computations. As a result, methods have been developed for
the approximate integration of the equations of motion first
transformed to a linear form. S, A. Chaplygin in reference 1
first pointed out such an approximste method applicable to flows
in which the Mach number does not exceed 0.4.

S. A. Christianovich (reference 2), in solving the problem
of the flow with circulation ghout a wing in a supersonic stream,
gave as a first approximgtion a generslization of the method of
Chaplygin to the cese where the region of variation of the velocity
in the hodograph plane lies within a sufficiently narrow ring
entirely inside the circle W <s&ay. At the same time and inde-
pendently an enalogous method was proposed by Tsien and von Kirmén
(references 3 and 4). These methods are not .applicable for
Mach numbers near unity. In the papers by F. I. Frankl (refer-
ence 5) and S, V. Falkovich (reference 8), epproximate equations .
of motlon are given suitable for the investigation of flows in
passing through the velocity of sound. In his recently published
peper, S. A. Christianovich (reference 7) showed that for Mach
numbers 1.05 < M <3,5 the equations for the stream function and
the velocity potential may approximately be replaced by the equa-
tions of Darboux with integral coefficlients and hence the general
integral obtained in finite form.

*"Tngtitut Mekhaniki Akedemii Newk Souizs, SSR" Prikladnais
Matematike 1 Mekhanika, Tom XI, 1947.
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The equation of motion of a gas is investigated herein for
large supersonic velocities and & method is shown for the approxi-
mate integration, which gives sufficient accuracy for Mach numbers
gresgter than 4.

1. Fundemental equation and 1ts transformation. - The egua~
tion determining the velocity potential of the two-dimensionel
irrotational aedisbatic motion of a gas has, as krnown, the form

2
(a? - u8) :—1:29 - 2uv aizcgy vz) Byz =0 (1.1)

To this equation the transformation of Legendre is applied.
As the independent varigbles in place of x and y are taken
dp/dx = u snd JP/dy = v end in place of the velocity poten-
tial o(x,y), the Legendre potential is introduced.

® (u,v) = ux + vy - o(x,y) (1.2)

Equation (1.1) becomes

2 2 2
(a2 - v2) %:(23 + 2uv gi—%; + (a8 - u?) -g-;g =0 (1..3)

 If the function ®(u,v) is determined, then by differen-
tiation of equation (l.2), the coordinates x and y of the
corresponding point in the flow plane are determined.

= 0%/du y = 30%/dv : (1.4)

Pass in the hodograph plane u,v to polar coordinstes and
gset u=Wcos @ and v =W sin 6; equations (1.3) and (1.4)
then become

2 _ w2 3% 220 - We J0
L _ o .
ZF 2t oWt 2w oW (1-9)
] _
X = cos 6 g&: ——-—sj‘;; 8 %D y = sin @ gW ___co; ® %b (1.8)

If only supersonic velocities are considered, 1t is more con-
venient in place of the independent variable W to introduce in
equation (1.5) the new variable
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z =1/ «/F -1 (1.7)

Thus 2z will be small for large Mach numbers and will increase
indefinitely as M—>1.

In order to carry out this transformation, from the equation
of Bernoulli the expression of W is found in terms of 2. Thus

2 2 ]
Wo,a e 2 _ K+l o >
2 TR1° "2 (h =%1 6
or
2, 2
1,1 _ hhey
2 (k-1) M oW’
r M is replaced by 2z, from equation (1.7)
2_2 2
h%e, “(1+2°)
We = "*_zé'_ (1.8)
1+h™z

By maeking use of this expression, pass in équations (1.5) end
(1.8) from the variable W +to the varisble z; then

% (n3-1)2 920  3nPzt + 20252 4+ 1% - 2 30 _
3z°  (1+22)2 (1+n222)2 30° (1+22) (1+222)z  dz
(1.9)
-
_ 1 | (1+23) (14h223) 3 3¢
x=-g [ (ha-l)z cos @ -B; + sin @8 BG_
1 [(1e22) (14m252) 39 20|
y=-% [ (hz-l)z sin @ 2 cos 6 BG_ (1.10)

The characteristics of equation (1.9) may be taken in the form
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z 2 z =
A=6 - (2%-1)dz bo=6 + gh’l)dzz -
o (1+22) (1+h82%) o (2%) (%) _
The line of maximum velocity 2z = O- in the hodograph plane
will correspond in the plane of the characteristics_ Ap  to the
line p - A =0, If the integration is carried out, _
A=6 - (h arc tg hz - arc tg z) b =6+ (h arc tg hz - arc tg z)
(1.11)
2. Investigation of equation (1.9). - If equatioﬁ_(l;g) is ) ' ;
referred to the characteristic coordinates AW,
29  B% - 2 - 252 - n2t a¢_a¢)=o (2.1)
AA a[..l -4(112 - l)Z E 5-7-\ ’ *
From equations (1.1l1), .

u~A=2h arc tg hz - arc tg z) - (2.2)

From equation (2.2) it follows that the coefficient of the
equation (2.1)

(2.3)

is & function of the difference u - A. Equations (2.2) and (2.3)
glve this dependence in parsmetric form.

From equation (2.3) it follows that the function IL(u - A)
is negative for z2 > (h? - 2)/h® and positive for _ _
22 < (b€ - 2)/h8, For 2% = (n@ - 2)/h2 the function L(u - A)
becomes zeroc. According to equation (1.7) this function corre-
gsponds to the Mach number

M= 2/ 3K = 1.565

S. A. Christianovich showed (reference 8) that for a given
value of the Mach number there is a change in the direction of )
curvature of the characteristics in the flow plane. The grsph of
the function L(p - A) is shown in figure 1.
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If the right side of equation (2.2) is expanded in a series
in powers of 2z, .

4
Lé_7\=(h2-1)z-ll—3-——lzs+... (2.4)

from which

2
no= A h* + 1 3

= + (}J."A)'l’.o.
2(r - 1) 24(12 - 1)3

If this series is substituted in equation (2.3),

W2 -2 (W% +1) (x8-2) + 8 (

L(]..l.-?.\)=2(u_}\) H=A)+...

24(h% - 1)2
Set h% = 6, Then
2
L(]J.->\)=u_7\-0.057 (b =A) + ...
For M > 4, assume
[ nd 2
L(p- - ?\) B - A
Equation (2.1) then becomes
Fe 2 a¢_a¢>_
QAL A - p\OA =0 (2.5)

Equation (2.5) is the equation of Darboux with integral
coefficient. The general integral of this equation has the form

32 EQ) - T() (XA + T () _ , EQ) - Y(u)

Q(A) u)=a>\au A - 1 ()\_u)z (7\-“)3

(2.8)

where X(A) and Y(u) are arbitrary functions of their arguments.
The expression (2.6) is the asymptotic integral of the exact
equation (2.1) for z-—>0, that is, for M—o,
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Equations (1.10) for the coordinates x and ¥y, after
transformation to the characteristics K, becomes on the
basis of equation (1.11)

SN
=-1 /2,30 A+pn 1/30 30 A+
X w[m+a>sin-—25+z<§; $\>cos-—2E

N
r (2.7)

- 1) A+ 1/30 3¢ A+
<§:+a>c0é———-&-;<—--a—>\>sin—2-&

1
T=+g l: 2 ou ] J
From equation (2.2) for small values of z,

Z = l-l-}\ =P'—~-}\

If this value of z is substituted in equation (2.7) and the
arbitrary functions @&(\ s B) eliminated from equation (2,7),
with the aid of equation (2.6) the final solution is obtained,

L /X + 1" X' - ! A4
X = = = - 2 — | gin L p
W [(M)z o) wn 21

X' - X' + Y X-Y A4
0(=—s -6 + 12 e o]]
<(>\-u)3 (A-p)% <x-p)5> ]

1 [/x ey x'-r'> A+ p
T=+= -2 cog gt 4
W l:<(>\-u)2 (A-n)3 2

b Sl 4 X' + Y XY A4 p
10 (=——szs _ 8 + 12 sin
<(>\-p.)3 (A-u)t (A-u)s> 2 :’

Consider the equations for the velocity potential v(W,0)
end the stream function V(W,0):

dp _ Po _Po 1y
TSN R-Rer.yiY

S81T
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If the variable =z is introduced in place of the modulus of the
velocity W according to equation (1.7) and equation (1.8) used,
these equations are transformed to the form

& Y el
%22 = - (1 + B2z2)%1 (8 - 1)1"!t (1 + 2z2) zﬁ %’
}(2.8)
2-K ol
%;P =- (1 + hzzl)m'l (L + 22)-1 (v? - 1)'1 z-:r:E %;—VJ

For small 2z, equations (2.8) may be replaced approximately by
the equations

- £ sl

= - (B2 - K, 1-k o¥

30 (b 1) 2 z
2% Kel

If the velocity potential ¢ is eliminated, the equation for the
stream function VY 1is

2 _qy2 2% _ 3%y, n? 3y _
(¢ - 1) 2 az2+--z-az 0 (2.9)

the characteristics of which have the form
2 2
A=6 - (h® - 1)z p=6+ (b8 - 1)z

If equation (2.9) is referred to the characteristics, it is trans-
formed into the form

By h2 oY D
YO (NPT <§%’\'£>=°

Setting h2 = 6 gives

2
5—% T %'%’>=° (2.10)
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The equation of Darboux with integral coefficient » which 1ls anal-
ogous to equation (2.5), is integrated in finite form.

3, Criterions of similarity. - By examining equation (1.9)
for Mach numbers near 1 (z-—>c) and also for large Mach numbers
(z—0), certain criterions of similarity can be established
that may be useful in evaluating experimental date obtalned in
wind-tunnel tests. For large values of 2z, equstion (1.9) can
be replaced by the epproximate equation

%0 (n2 - 1)23% 330
322 h428 392 z 0z ° (3.1)
and for smsll values of z by the approximate eguation
2 2 - .
0 2.2, nt-20 (3.2)

322 362 z oz

A thin slightly cambered airfoil at smell angle of attack is
now considered in a plane-parallel nonvertical gas flow with Mach
number MO at a large distance from the airfoil. The profile

chord is denoted by 1 and its maximum thickness is denoted by 8.

If it is assumed that M, is near unity, in equation (3.1)

0 = o%5/1 z = z¥z, (zO = 1/ 4" - 1)

and equation (3.1) becomes

2 3% K -123%0 320
3272 g8 0% | T*OF

1

2/ -1)8 (3.4)

The number K; may be called the criterion of similarity in

the sense that two flows having different Mach numbers about itwo
airfoils of different thicknesses © and different chords 1 but
for which the valuee of K; are the same will be determined by

the same "nondimensional" equation (3.3); hence, for the drag
coefficient C

Ky =0 (3.3)

where

Cy = £(K;)
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In an entirely analogous manner starting from equation (3.2),
a second criterion of similarity valid for large Mach numbers is

5 /o3 .05
Ky=g ¥My - 1= 7 M,

This criterion of similarity has recently been obtained by Tsien
by a different considerably more compliceted method.

Translated by Samuel Reiss
National Advisory Committee
for Aeronsutics }
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Figure 1.
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